
LLNL-TR-665868

Characterization of UMT2013
Performance on Advanced
Architectures

L. Howell

January 6, 2015

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Characterization of UMT2013 Performance on Advanced
Architectures

Louis Howell

howell4@llnl.gov, phone (925) 422-6105
Lawrence Livermore National Laboratory, Livermore, CA

Abstract

This paper presents part of a larger effort to make detailed assessments of several proxy applications
on various advanced architectures, with the eventual goal of extending these assessments to codes
of programmatic interest running more realistic simulations. The focus here is on UMT2013, a
proxy implementation of deterministic transport for unstructured meshes. I present weak and strong
MPI scaling results and studies of OpenMP efficiency on the Sequoia BG/Q system at LLNL, with
comparison against similar tests on an Intel Sandy Bridge TLCC2 system. The hardware counters
on BG/Q provide detailed information on many aspects of on-node performance, while information
from the mpiP tool gives insight into the reasons for the differing scaling behavior on these two
different architectures. Preliminary tests that exploit NVRAM as extended memory on an Ivy Bridge
machine designed for “Big Data” applications are also included.

Introduction

Modern computer architectures pose major challenges for simulation code development, not only
requiring large-scale parallel scalability but also increasing attention to on-node parallel efficiency
and memory management. Efforts are under way at many sites to better understand how codes of
programmatic interest behave on advanced hardware both in order to make the implementations of
key algorithms more efficient and to guide procurements of new machines. A team at LLNL has
studied three proxy applications that include simplified implementations of important algorithms.
This paper focuses on the results for UMT2013 [1], a proxy app for deterministic radiation
transport on an unstructured mesh. (The other two proxy apps in the study, not presented here, are
the Monte Carlo tracking code MCB and the algebraic multigrid code AMG2013.)

Most of the results presented here are for the IBM BG/Q architecture. The runs were done on
Vulcan, part of the LLNL Sequoia procurement. The hardware counters on BG/Q provide detailed
information on memory bandwidth, cache utilization, instruction mix, and other aspects of on-node
performance [2]. For comparison, runs were also done on the Cab machine, a Linux cluster using

1

8-core Intel Xeon E5-2670 Sandy Bridge processors with InfiniBand QDR interconnect. Cab is
part of the TLCC2 procurement. The mpiP [3] and memP [4] tools were used on both machines to
give detailed information about MPI efficiency and heap memory use. One additional test used
Catalyst, a Ivy Bridge based machine with unusually large memory (128GB per node) and an
additional 800GB of SSD NVRAM per node. Software support for using the SSD memory without
major code modifications has recently become available, but test results using the SSD memory
show disappointing performance.

None of the performance tools were perfect. I will mention some difficulties with the tools in the
context of the individual tests, and will summarize some lessons learned in a short section at the
end of this report.

Weak Scaling

A weak scaling test measures parallel performance in a series of runs where the size of the problem
increases in proportion to the number of processors used, so the problem size per processor is held
fixed. On Vulcan UMT2013 showed fairly good weak scaling to at least 131072 cores. At the
largest scale the speed per iteration was 67% of that at small scale. (There was some additional
slowdown due to the fact that the code required more iterations to converge at large scale. There
were also issues with the scaling of the measurement tools themselves.) Results on Cab were
similar but were only run out to 4096 cores. The parallel efficiency for the largest runs on Cab was
comparable to that of the largest runs on Vulcan, though the latter used 32 times as many cores
(and 128 times as many threads)!

In UMT2013 large-scale MPI parallelism is over 3D spatial domains. This discrete ordinates (Sn)
code for multigroup deterministic transport [5, 6] also allows user control over the number of
energy groups and the number of angles used in the discretization, and OpenMP threading is used
over the angles. (The angles represent the directions in which photons are moving. In any spatial
zone there can be radiation moving in many different directions with different intensities, and the
set of angles can be considered a discretization of these directions over the 2D surface of the unit
sphere. Combined with the 1D spectrum of photon energies and the 3D spatial discretization the
complete system is then 6 dimensional, plus one more for time. Since intensities must be stored for
every combination of zone, angle, and energy, it is no surprise that memory management is a major
consideration for this code.)

On Vulcan I did two series of weak scaling tests, one using 10×10×10 and one using 12×12×12
spatial grids per MPI task. Both problems used 16 energy groups and 256 angles. The runs were
done with 8 MPI tasks per BG/Q node and 8 threads per task. Vulcan has 16 cores per node with 4
hardware threads per core, so this configuration made full use of the hardware threads. On Cab I
ran the series with 12×12×12 grids, using 16 MPI tasks per node and 1 thread per task. Cab has
16 cores per node and no hardware threads. The reason for running half as many MPI tasks per
node on Vulcan was that this machine has only 16GB of memory on each node, compared to 32GB
for Cab; running 16 tasks per node on Vulcan would require smaller grids per task. The runs on
Vulcan used roughly 7.5GB per node for 10×10×10 grids and 12.5GB for 12×12×12, as
measured by memP. The Cab runs used 26.4GB per node. (Comparisons exploring the
performance effects of OpenMP threading in detail appear in later sections below.)

2

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 64 128 256 512 1K 2K 4K 8K 16K 32K 64K

MPI tasks (Vulcan 8x8, Cab 16x1)

UMT2013 Weak Scaling: (Unknowns * Iterations) / (Time * Tasks)

Cab 12x12x12 Grids
Vulcan 12x12x12 Grids
Vulcan 10x10x10 Grids

 0

 5

 10

 15

 20

 25

 64 128 256 512 1K 2K 4K 8K 16K 32K 64K

%
 o

f R
un

 T
im

e

MPI tasks (Vulcan 8x8, Cab 16x1)

UMT2013 Weak Scaling, MPI Percentage of Run Time (mpiP)

Cab 12x12x12, -c
Cab 12x12x12, -c -l
Vulcan 10x10x10, -c
Vulcan 10x10x10, -c -l
Vulcan 10x10x10, -c -l -o
Vulcan 12x12x12, -c
Vulcan 12x12x12, -c -l
Vulcan 12x12x12, -c -l -o

 0

 200

 400

 600

 800

 1000

 64 128 256 512 1K 2K 4K 8K 16K 32K 64K

se
co

nd
s

MPI tasks (all cases are 8x8: 8 tasks per node, 8 threads per task)

UMT2013 Vulcan Weak Scaling, 10x10x10 Grids: Wall Clock Time

plain
mpiP -c
mpiP -c -l
mpiP -c -l -o
memP
HPM
postprocess mpiP -c
postprocess mpiP -c -l
postprocess mpiP -c -l -o
postprocess memP
postprocess HPM

Figure 1: Weak scaling study. Top: Figure of merit. Bottom Left: Percentage of run
time tied up in MPI communication. Bottom Right: Wall clock times showing
overheads caused by the performance instrumentation.

Runs were instrumented using the mpiP tool [3] for MPI profiling and the memP tool [4] to
measure heap memory use. Figure 1 shows the performance results in three different ways. First
we look at the figure of merit, a metric that focuses on the rate at which basic components are
executed and factors out the numbers of iterations required for convergence. (The iteration count is
also an important component of overall runtime, but our main concern here is with the performance
of this implementation on particular architectures, as opposed to the mathematical properties of the
algorithm.) Perfect weak scaling would yield flat lines. The Vulcan (BG/Q) results are not perfect
but are still fairly good. The Cab (TLCC2) results show a steeper drop in performance at scale,
even on the much smaller number of available processors, though individual processors are faster
than those on BG/Q. The difference between the 10×10×10 and 12×12×12 tests is negligible.

The second plot (bottom left) shows the percentage of time spent in MPI communication as
measured by mpiP. Various mpiP options were tried. The -c option combines results from all MPI
tasks into a single report, -l switches to a different algorithm for combining information from

3

different tasks, and -o turns off profiling from the beginning of execution, instead relying on
explicit calls I put in to activate the instrumentation only during the main timestep loop. The -o
test did not work on Cab because the activation calls failed to turn on the MPI profiling. (On the
TLCC2 machines UMT2013 builds using dynamic libraries, and apparently picks up the wrong
version of the activation routines when linking with mpiP.)

The MPI profiles on Vulcan show a small and roughly constant percentage of time going to MPI
communication, independent of grid size and the mpiP options. Cab, on the other hand, shows an
increasing amount of time going to MPI as the number of tasks grows. Apparent differences
between the two curves generated for Cab are not repeatable and therefore not really caused by the
different mpiP options tested for this plot. All timing results on Cab vary more from one run to the
next than those measured on Vulcan. I will demonstrate this in more detail in the strong scaling
section below.

The third figure (bottom right) looks closely at the costs of running the instrumentation itself. All
runs are for the 10×10×10 series of tests on Vulcan, with separate curves for the code without
instrumentation, with the various mpiP options, with the memP memory profiling tool, and with
the HPM (mpitrace) library for gathering information from the BG/Q hardware performance
counters. (I will show results from the HPM library in a later section.) These are wall clock
measurements, and a major component of the upward trend for the six main curves is the increase
in the number of iterations required for convergence at larger problem sizes. All six curves for the
main code lie exactly on top of one another, which shows that the tools are not significantly
perturbing these timing measurements. Where the tools do show a significant cost, though, is in the
post-processing phase after the main part of UMT has finished. Post-processing costs for mpiP
skyrocket without the -l option. (Memory costs for this phase also rise dramatically. Tests for the
series with 12×12×12 grids were closer to filling memory and often crashed without -l.) The
post-processing costs for mpiP with -l are smaller but are also starting to rise for the largest runs;
the same is true for memP. The overheads added by HPM library were exceptionally low compared
to those from the other tools, both during the collection phase and during postprocessing.

Strong Scaling

A strong scaling test measures parallel performance with the total size of the problem held
constant. In UMT2013 MPI parallelism is over 3D spatial domains, so as the number of processors
increased I reduced the spatial grid size on each processor to keep the total number of unknowns
unchanged. The tests shown in Fig. 2 used grids varying from 12×12×12 down to 3×3×3. Users
also have control over the number of angles (transport directions) and energy groups, but for this
test I held these constant. Note that OpenMP threading is over the angles in each octant and so is
independent of the spatial grid size.

Both Vulcan and Cab have 16 cores per node, but on Vulcan there are also 4 hardware threads per
core. OpenMP threading allows access to these hardware threads and can also be used for running
multiple cores per MPI task. All of the Cab runs shown here used 16 MPI tasks per node and
1 thread per task (16×1), but the Vulcan runs were done in three groups: a (16×1) series was
similar to the Cab runs but did not use all the hardware threads, a (16×4) series was faster because
it did use all the hardware threads, and an (8×8) series was faster still because it used twice as
many cores as the other two. The large spread between the different Vulcan curves is not a surprise

4

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 64 128 256 512 1024 2048 4096

Total MPI tasks, with (MPI Tasks per Node) x (Threads per Task)

UMT2013 Strong Scaling: (Unknowns * Iterations) / (Time * Tasks)

Cab 16x1
Vulcan 8x8
Vulcan 16x4
Vulcan 16x1

 0

 10

 20

 30

 40

 50

 60

 64 128 256 512 1024 2048 4096

%
 o

f R
un

 T
im

e

Total MPI tasks, with (MPI Tasks per Node) x (Threads per Task)

UMT2013 Strong Scaling: MPI Percentage of Run Time

Cab 16x1
Vulcan 8x8
Vulcan 16x4
Vulcan 16x1

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5

%
 o

f R
un

 T
im

e

Five Identical Test Runs: 256 Nodes, 4096 MPI Tasks (16x1)

UMT2013 Vulcan Strong Scaling: MPI Breakdown (mpiP -c -o)

Wait 7
Barrier 5

Allreduce 20
Waitall 13
Barrier 3
Wait 16

Allreduce 27

Allreduce 22
Barrier 1

Allreduce 6
Allreduce 21

Start 28
Barrier 17

Start 25

Allreduce 8
Barrier 10
Barrier 19

Allreduce 2
Allreduce 18

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

%
 o

f R
un

 T
im

e

Five Identical Test Runs: 256 Nodes, 4096 MPI Tasks (16x1)

UMT2013 Cab Strong Scaling: MPI Breakdown (mpiP -c -o)

Wait 3
Barrier 26

Allreduce 18
Waitall 27
Barrier 19

Wait 21
Allreduce 4

Allreduce 13
Barrier 17

Allreduce 7
Allreduce 1

Start 28
Barrier 9
Start 23

Allreduce 12
Barrier 25

Barrier 6
Allreduce 11
Allreduce 14

Figure 2: Strong scaling runs on Vulcan (BG/Q) and Cab (TLCC2), with the Vulcan
results also demonstrating reasonably efficient use of OpenMP threads. Top Left:
Figure of merit. Top Right: Percentage of run time tied up in MPI communication.
Bottom: Comparison showing five identical runs of the largest 16 x 1 problem on
each machine, with MPI time during the timestep loop broken down by callsite. The
callsites are arranged in the same order for both runs even though mpiP identifies
them with different labels. Note the different scale and greater variability for the
tests on Cab. Each series of five tests was run with a single script and therefore
used the same processors under similar runtime conditions.

since these tests used different machine resources: different numbers of cores and hardware
threads. For a comparison showing the effects of allocating the same resources in different ways
see the next section.

The top left plot in Fig. 2 shows the figure of merit for the central timestep loop: with perfect
strong scaling the lines would be flat. Cab is faster for small runs but shows much worse parallel
scaling than Vulcan. The top right plot shows how much time in each run was spent doing MPI
communication, as reported by mpiP. (These mpiP measurements are for the whole code, not just
the central timestep loop, but that doesn’t make a major difference here.) The obvious conclusion
is that Vulcan has slower processors but a better interconnect. The bottom two plots, though, show
that there is another factor involved that may be even more critical at scale. Times spent in each

5

MPI communication step are much more variable on Cab than on Vulcan from one run to the next.
Operating system noise is a likely explanation: when interrupts occur during an MPI collective the
processors that are delayed keep all the others waiting. Contention for network resources with
other jobs running on the machine is another contributing factor. The BG/Q network is better at
isolating jobs from each other.

These MPI breakdown plots use the -o option to mpiP in order to filter out some variability that
happens during initialization and focus on the main timestep loop. To get -o to work on Cab I
changed the build to use static libraries. Even though mpiP uses different numbers to identify MPI
callsites on the two different machines, I have arranged the figures so that corresponding callsites
appear in the same order and can be compared directly.

Threading and Hardware Performance Counters

The examples in the previous section showed that OpenMP threading improved performance on
Vulcan for a fixed number of MPI tasks by using additional cores and hardware threads per task. It
is a more complicated question whether MPI or OpenMP threads provide the more efficient use of
a fixed allocation of hardware resources. This section explores the tradeoff between MPI and
OpenMP parallelism, and also highlights some of the detailed information available from BG/Q
hardware performance counters that helps interpret the differences between tests.

In the top row of Fig. 3 I show the performance for 64 nodes of Vulcan and of Cab as the tradeoff
varies from all-MPI to all-OpenMP on each node. Though there are 16 cores per node on each
machine, the 64 hardware threads on each BG/Q node can be accessed in any MPI/OpenMP
combination from (64×1) to (1×64). On Cab the combinations vary from (16×1) to (1×16). The
figure of merit used for these plots is slightly different from the one used in the scaling studies:
since the amount of machine hardware is held constant I do not divide by the number of MPI tasks.
Also note that because each test keeps the total number of mesh zones constant, but varies the
number of MPI tasks, the size of the spatial domain handled by each MPI task is changing as we
move from left to right across each plot.

Several runs are shown with variations in spatial grid size and numbers of angles and energy
groups. (The grid sizes shown in each legend are the ones corresponding to 8 MPI tasks per node.
So on Vulcan a line labeled “12×12×12” actually uses grids that vary from 3×3×3 to
24×24×24 per MPI task as the number of tasks changes.) High figures of merit in these plots tend
to result from using large numbers of energy groups. All energy groups share the same geometric
quantities associated with a given combination of zone and angle, so in UMT2013 the loop over
energy groups is the innermost loop. With more groups the geometric calculations are amortized
over more unknowns. The lowest curve is the one using only three energy groups. This is also the
flattest curve, though. It runs more efficiently with large numbers of OpenMP threads because it
has a large number of angles to thread over. The other curves show more of a drop in performance
for large numbers of threads because they don’t have enough angles per octant to keep all the
threads busy.

The results for Cab show a sharper drop in performance for the (1×16) mode, even in the cases
with large numbers of angles that perform well with up to 64 threads on Vulcan. There are two
sockets on each node of Cab. Threading works well across the 8 cores on each Xeon chip, but

6

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

64x1 32x2 16x4 8x8 4x16 2x32 1x64

(MPI Tasks per Node) x (Threads per MPI Task)

UMT2013 Vulcan Thread Scaling: (Unknowns * Iterations) / Time

12x12x12, 64 angles, 32 groups
12x12x12, 256 angles, 16 groups
10x10x10, 256 angles, 16 groups
16x16x16, 64 angles, 16 groups
16x16x16, 64 angles, 8 groups
20x20x20, 48 angles, 8 groups
10x10x10, 1024 angles, 3 groups

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

16x1 8x2 4x4 2x8 1x16

(MPI Tasks per Node) x (Threads per MPI Task)

UMT2013 Cab Thread Scaling: (Unknowns * Iterations) / Time

12x12x12, 64 angles, 32 groups
12x12x12, 256 angles, 16 groups
10x10x10, 256 angles, 16 groups
16x16x16, 64 angles, 16 groups
16x16x16, 64 angles, 8 groups
20x20x20, 48 angles, 8 groups
10x10x10, 1024 angles, 3 groups

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

64x1 32x2 16x4 8x8 4x16 2x32 1x64

G
B

/s

(MPI Tasks per Node) x (Threads per MPI Task)

UMT2013 Vulcan Thread Scaling: Total Memory Bandwidth per Node

12x12x12, 64 angles, 32 groups
12x12x12, 256 angles, 16 groups
10x10x10, 256 angles, 16 groups
16x16x16, 64 angles, 16 groups
16x16x16, 64 angles, 8 groups
20x20x20, 48 angles, 8 groups
10x10x10, 1024 angles, 3 groups

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

64x1 32x2 16x4 8x8 4x16 2x32 1x64

B
yt

es
 /

(U
nk

no
w

ns
 *

 It
er

at
io

ns
)

(MPI Tasks per Node) x (Threads per MPI Task)

UMT2013 Vulcan Thread Scaling: Total Memory Traffic / Unit of Work

12x12x12, 64 angles, 32 groups
12x12x12, 256 angles, 16 groups
10x10x10, 256 angles, 16 groups
16x16x16, 64 angles, 16 groups
16x16x16, 64 angles, 8 groups
20x20x20, 48 angles, 8 groups
10x10x10, 1024 angles, 3 groups

Figure 3: Performance for a fixed number of processors, showing changes as the
code shifts from pure MPI parallelism to heavy use of OpenMP threading. Top:
Figures of merit on Vulcan and on Cab. Bottom Left: Memory bandwidth per node
on Vulcan. Bottom Right: Memory traffic per work unit.

threading across the entire node is much slower due to low bandwidth between the two sockets.

The second row of Fig. 3 shows the use of memory bandwidth for UMT2013 on BG/Q, as reported
by the HPM (mpitrace) library [2]. The total bandwidth available on a BG/Q node in practice is
about 28 GB/s. A previous version of UMT was bandwidth-limited, but this was changed by a
revision in the data structure layout in UMT2013. None of the test cases here uses more than 19
GB/s. There is a strong and somewhat puzzling dependence on the number of threads per MPI
task, with pure-MPI cases using the most bandwidth. To attempt to explain why bandwidth use
declines so consistently with increasing thread count, the plot at lower right looks at memory
bandwidth divided by the figure of merit (with a constant scaling factor). The result is the number
of bytes of memory traffic required to execute each iteration of the algorithm, per unknown. The
downward trend in these curves for small numbers of threads can be interpreted as different threads
sharing data fetched into cache. For larger numbers of threads, though, the curves flatten out,
showing that the continued decrease in memory bandwidth is tied to the decrease in the figure of
merit: the code draws less memory simply because it is doing less useful work. The apparently
steady decline in memory bandwidth is thus seen to be a combination of two different effects for

7

 0

 1

 2

 3

 4

 5

64x1 32x2 16x4 8x8 4x16 2x32 1x64

(MPI Tasks per Node) x (Threads per MPI Task)

UMT2013 Vulcan Thread Scaling: Int to Float Instruction Ratio

12x12x12, 64 angles, 32 groups
12x12x12, 256 angles, 16 groups
10x10x10, 256 angles, 16 groups
16x16x16, 64 angles, 16 groups
16x16x16, 64 angles, 8 groups
20x20x20, 48 angles, 8 groups
10x10x10, 1024 angles, 3 groups

 0

 0.2

 0.4

 0.6

 0.8

 1

64x1 32x2 16x4 8x8 4x16 2x32 1x64

(MPI Tasks per Node) x (Threads per MPI Task)

UMT2013 Vulcan Thread Scaling: Int Instr per Cycle per Core

12x12x12, 64 angles, 32 groups
12x12x12, 256 angles, 16 groups
10x10x10, 256 angles, 16 groups
16x16x16, 64 angles, 16 groups
16x16x16, 64 angles, 8 groups
20x20x20, 48 angles, 8 groups
10x10x10, 1024 angles, 3 groups

 0

 1

 2

 3

 4

 5

64x1 32x2 16x4 8x8 4x16 2x32 1x64

(MPI Tasks per Node) x (Threads per MPI Task)

UMT2013 Vulcan Thread Scaling: Int to Float Instruction Ratio (Threaded Loop)

12x12x12, 64 angles, 32 groups
12x12x12, 256 angles, 16 groups
10x10x10, 256 angles, 16 groups
16x16x16, 64 angles, 16 groups
16x16x16, 64 angles, 8 groups
20x20x20, 48 angles, 8 groups
10x10x10, 1024 angles, 3 groups

 0

 0.2

 0.4

 0.6

 0.8

 1

64x1 32x2 16x4 8x8 4x16 2x32 1x64

(MPI Tasks per Node) x (Threads per MPI Task)

UMT2013 Vulcan Thread Scaling: Int Instr per Cycle per Core (Threaded Loop)

12x12x12, 64 angles, 32 groups
12x12x12, 256 angles, 16 groups
10x10x10, 256 angles, 16 groups
16x16x16, 64 angles, 16 groups
16x16x16, 64 angles, 8 groups
20x20x20, 48 angles, 8 groups
10x10x10, 1024 angles, 3 groups

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

64x1 32x2 16x4 8x8 4x16 2x32 1x64

%
 o

f T
ot

al
 L

oa
ds

(MPI Tasks per Node) x (Threads per MPI Task)

UMT2013 Vulcan Thread Scaling: L1D Cache Misses (Threaded Loop)

12x12x12, 64 angles, 32 groups
12x12x12, 256 angles, 16 groups
10x10x10, 256 angles, 16 groups
16x16x16, 64 angles, 16 groups
16x16x16, 64 angles, 8 groups
20x20x20, 48 angles, 8 groups
10x10x10, 1024 angles, 3 groups 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

64x1 32x2 16x4 8x8 4x16 2x32 1x64

%
 o

f T
ot

al
 L

oa
ds

(MPI Tasks per Node) x (Threads per MPI Task)

UMT2013 Vulcan Thread Scaling: L2 Cache Misses (Threaded Loop)

12x12x12, 64 angles, 32 groups
12x12x12, 256 angles, 16 groups
10x10x10, 256 angles, 16 groups
16x16x16, 64 angles, 16 groups
16x16x16, 64 angles, 8 groups
20x20x20, 48 angles, 8 groups
10x10x10, 1024 angles, 3 groups

Figure 4: BG/Q hardware performance counter information showing effects of
shifting from pure MPI to OpenMP for a fixed number of processors. Top: ratio
between int and float instructions, and int instructions per cycle, measured over
the full timestep loop which includes some unthreaded code. Middle: same
quantities measured only for the threaded loop over angles. Bottom: L1 and L2
cache miss rates for the threaded angle loop, which help explain why some test
cases achieved higher instruction rates than others.

8

different parts of the curves.

As a separate issue, the memory footprint was also higher for cases with more MPI tasks, even
though all tests on each curve have the same number of unknowns. Missing points on some of the
curves were runs that failed due to insufficient memory. All of these missing points are on the left
sides of the various plots. I’m not including plots of memory usage because the results are
somewhat irregular. The memP tool does not appear to be thread-safe, and becomes more and
more likely to return corrupt results as the number of threads increases. There is also a heap
memory estimate returned by mpitrace, but this is consistently higher than the memP estimate even
in cases where memP appears to be functioning correctly. It appears that that mpitrace reports the
heap memory allocated to the process by the operating system, while memP reports the amount
actually used by the application.

The “overloaded” modes (64×1) and (32×2) on BG/Q use multiple MPI tasks per core. It is
surprising that these perform even as well as they do. The heavy use of both memory and memory
bandwidth in these modes, though, indicates that they do not make effective use of machine
resources and will not be practical for most production calculations.

The six plots in Fig. 4 show more information about these same runs obtained using the BG/Q
hardware performance counters. The top two plots were derived from measurements over the full
timestep loop, which includes both threaded and unthreaded code. The ratio between integer and
floating point instructions does not depend at all on the number of threads per task but only on the
number of energy groups. Integer instructions here are mostly indexing operations: striding
through the mesh. All of the test cases use at least as many int as float instructions. The highest
floating point usage occurs with large numbers of energy groups because these cases have more
work per mesh zone (recall that the loop over groups is the innermost loop). A BG/Q core can
perform at most one int and one float instruction per cycle, and it is unusual to see rates much
above 0.7 in practice. The plot on the right shows that the int instruction rate can reach a large
fraction of the maximum rate when the number of threads is small. The integer instruction rate
appears to be a primary limiting factor for UMT2013.

The second row of plots shows the same quantities measured only for the threaded loop over
angles. The integer instruction rate is instructive. Each downturn in each of the curves happens
when the number of threads exceeds the number of angles per octant. Without this effect the
curves would be essentially flat. The plot above this one, that measures the same quantity over the
full timestep loop, shows a more steady decline in the instruction rate. This decline is therefore
associated with the unthreaded code outside the angle loop, which can dominate the run time when
the number of threads is large.

The final two plots in Fig. 4 give L1 and L2 cache miss rates as a fraction of loads. These help
explain the remaining differences between integer instruction rates for the various test cases. Some
features of the instruction rate curves are due to idle threads, as discussed above. The remaining
differences correlate with cache miss rates, and tests with higher instruction rates generally showed
lower cache miss rates. The lowest cache miss rates were for the test problem with the fewest
energy groups. This is the case that did the most integer operations per floating point operation,
reached the highest integer instruction rates, and drew the least bandwidth from main memory.

There are many other counters available in addition to the ones used for the figures. Almost no

9

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100

S
ec

on
ds

Buffer Size in Main Memory (GB)

UMT2013 Timings on Catalyst Using DI-MMAP

24x1, Problem Size ~40GB
1x24, Problem Size ~21GB

Figure 5: Performance on a single node of Catalyst as a function of the DI-MMAP
buffer size in main memory. When the buffer size is too small, allocated pages
migrate to NVRAM and execution time goes up. The large increases in run time
observed for small buffers with both MPI and OpenMP parallelism show that the
current implementation is not effectively managing memory for UMT.

SIMD instructions are generated by UMT2013, and none at all in the threaded loop over angles
where most of the work is done. If the code were modified to make better use of the SIMD
units—perhaps through explicit directives—then the SIMD counter information would give
valuable information about the effects of the change. The instruction cache miss rate turned out to
be an issue for one of the other apps (MCB). UMT2013 has a very low rate of instruction cache
misses, though, so this is not a performance issue worth exploring here.

Using NVRAM to Supplement Main Memory

The Catalyst machine at LLNL is similar to the Sandy Bridge TLCC2 machine Cab but uses
12-core Xeon E5-2695 v2 Ivy Bridge processors. Its most distinguishing feature is large memory
(128GB per node) and an additional 800GB of SSD NVRAM per node. Given that UMT with its
six-dimensional discretization requires storage of large amounts of data, and that future
architectures may provide less memory per processor and may require use of complex hierarchical
memory systems, it was interesting to look at whether UMT could use the SSDs on Catalyst as a
supplement to main memory. (Other Lab codes have begun to do so [7].)

The software package DI-MMAP, currently under development at LLNL [8], allows pages on the
heap to migrate between NVRAM and main memory as needed. A buffer in main memory holds
the currently resident pages. If this buffer is large enough to contain the entire heap, then the
application runs nearly as fast as it would normally (measurements with UMT2013 showed a
slowdown of around 15% compared to the same tests run without DI-MMAP). If the heap is too
large for the buffer then some pages will only exist in NVRAM at any given time and may be

10

swapped into the buffer as needed.

The obvious approach was to allocate a buffer that nearly fills main memory on a node and then
experiment with UMT2013 test problems larger than the buffer. This turned out to be more
difficult than expected. UMT2013 is an idealized proxy app, and though it scales well to large
numbers of MPI tasks it is not set up to handle unusually large memory sizes per task. The grid
generator scales very poorly with increasing zone count per spatial domain. Though this
initialization time is not counted as run time for the application itself, it quickly becomes
prohibitive—hours to initialize a test that would take minutes to run. There are also built-in limits
on the numbers of angles and energy groups. Rather than try to modify UMT to enable larger
problem sizes, I decided to frame the test a different way. After all, dealing with a large main
memory was not the point of the exercise.

Figure 5 shows timings for two series of tests, each one holding the problem size fixed while
varying the size of the buffer allocated in main memory. This not only avoids the need to construct
very large test problems, it also allows us to estimate the costs of swapping pages to NVRAM
without the complication of changing other computational costs at the same time. Both test
problems ran on a single node of 24 cores. One used 24 MPI tasks, the other used 24 OpenMP
threads (though the code was built with support for MPI+OpenMP in both cases).

The run times approach a constant value for all buffer sizes large enough to contain the entire
allocated heap. As the buffer becomes smaller than the heap size, though, run times increase
dramatically. Even small amounts of memory moving to and from NVRAM can use more time
than the rest of the algorithm combined.

This is a disappointing result and has not yet been explained. On the bright side is the fact that
DI-MMAP worked at all for this code. This its first use with MPI, and DI-MMAP developer Brian
Van Essen had to make significant modifications in order to get it running. He believes there may
be an interaction with MPI that causes pages to migrate more than necessary, so improvement in
future versions of DI-MMAP is possible. On the other hand, the access patterns used by
UMT2013, such as the fact that the code accesses almost all of its memory every timestep, may
render this sort of automatic approach impractical. It may be necessary to modify the code in order
to explicitly stage access to memory before it is needed, much as MPI codes can be structured to
overlap communication and computation.

Performance Tool Lessons Learned

The performance tools gave useful information but did not always work well—some of the
problems were outright bugs. Some issues were described in more detail in earlier sections. Here is
a quick summary of difficulties encountered:

• Building UMT with dynamically-linked libraries caused trouble for both mpiP and memP,
though many features could be made to work.

• mpiP post-processing does not scale well without the -l option.

• memP can give incorrect heap sizes with run with threads or when run on Catalyst even
without threads.

11

• memP shows the heap size used by the program, which may be significantly smaller than the
total size of the memory pool allocated to the process by the operating system.

• memP never worked for MCB.

• At high instruction cache miss rates some derived quantities returned by the HPM library on
BG/Q became unreliable with the default counter group 0. Using HPM GROUP=8 avoided
this problem by explicitly including instruction cache misses.

The last two items were issues for MCB, not UMT, but are included for completeness. (UMT has a
very low rate of instruction cache misses.)

Conclusions

This is very much a work in progress, and the conclusions we can draw from study of UMT2013
alone can only be tentative. Further work will require comparison with other proxy apps and with
production codes. We must also understand how codes behave on additional architectures with
accelerators and more complex memory hierarchies. Nevertheless a few interesting results are
apparent from these UMT experiments alone.

MPI scaling was generally good. This is not surprising. Codes and algorithms have been designed,
studied, written, and rewritten for distributed-memory parallel computers for quite a few years now,
not just in academic research but in the lab environment that produced UMT. The parallel machines
themselves have also gone through several generations of evolution to better support programmatic
applications. The significant differences between the machines examined here highlight the
importance of consistency in node and interconnect performance for large-scale bulk-synchronous
applications. A conclusion is that either that consistency must be maintained in future
architectures, or the largest-scale applications will have to move away from bulk-synchronous
programming models in order to adapt better to a changing runtime environment.

The results for on-node performance with OpenMP show that the current UMT threading model is
effective only for small numbers of threads. UMT2013 may make more efficient use of memory
bandwidth than earlier UMT versions, but it is still near the bandwidth limit BG/Q. Cache
performance is reasonable but differences in cache miss rates may explain some of the
performance differences among various test cases. Both threading and memory management are
likely to drive future developments in code and compiler design; these issues appear to be less
settled than MPI parallelism.

The high ratio of int to float instructions shows how integer instructions cannot be considered an
afterthought for complex codes, even for a mesh-based code like UMT2013. Integer instruction
rate was the most important factor limiting performance. Future architecture choices should take
this into account, and not focus too much on features such as floating point vectorization that may
only benefit a limited set of codes. (Other proxy apps used more complex data structures and had
even more lopsided int to float ratios than UMT.)

Finally, on the issue of how to use NVRAM and other new additions to the memory hierarchy, we
have only scratched the surface. Preliminary experiments shown here were not promising, and
suggest that major shifts in algorithm design may be needed.

12

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

References

[1] https://asc.llnl.gov/CORAL-benchmarks/.

[2] Walkup, R. E., “MPI Wrappers for BGQ,” IBM Advanced Computing Technology Center,
Yorktown Heights, NY, unpublished document available on BG/Q systems (2013).

[3] Vetter, J., and Chambreau, C., “mpiP: Lightweight, Scalable MPI Profiling,”
mpip.sourceforge.net (2014).

[4] Chambreau, C., “memP: Parallel Heap Profiling,” memp.sourceforge.net (2010).

[5] Nowak, P. F., and Nemanic, M. K., “Radiation Transport Calculations on Unstructured Grids
Using a Spatially Decomposed and Threaded Algorithm,” in Proceedings of the International
Conference on Mathematics and Computation, Reactor Physics and Environmental Analysis
in Nuclear Applications, Madrid, Spain, September 27–30, 1999, Vol. 1, p. 379.

[6] Nowak, P., “Deterministic Methods for Radiation Transport: Lessons Learned and Future
Directions,” ASC Workshop on Methods for Computational Physics and Modern Software
Practices, March 2004, Lawrence Livermore National Laboratory report
UCRL-CONF-202912.

[7] Van Essen, B., Pearce, R., Ames, S., and Gokhale, M., “On the Role of NVRAM in Data
Intensive HPC Architectures: an evaluation,” in IEEE International Parallel & Distributed
Processing Symposium (2012).

[8] Van Essen, B., Hsieh, H., Ames, S., Pearce R., and Gokhale, M., “DI-MMAP–a Scalable
Memory-map Runtime for Out-of-core Data-intensive Applications,” Cluster Computing
(2013).

13

